We will take a look at WASM again! But this time with Rust. Why Rust? Because I can compile Rust directly into WASM.
Our goal is the same app we’ve created in Go, but … yes! with Rust!
What is the plan?
Let’s try to create same app that we did last time in Go. The asciifyier. It ill convert data from video camera into asciiart.
# cargo new --lib asciifier
One more thing:
# rustup target install wasm32-unknown-unknown
Target is needed, so we can compile directly to WASM.
Before we go into the code we need to add dependencies into Cargo.toml
file.
[dependencies]
wasm-bindgen = "0.2.63"
wasm-bindgen-futures = "0.4.15"
js-sys = "0.3.35"
console_error_panic_hook = "0.1.7"
log = "0.4"
console_log = { version = "1", features = [
'color'
]}
web-sys = { version = "0.3.4", features = [
'Document',
'Element',
'GetUserMediaRequest',
'HtmlCanvasElement',
'HtmlMediaElement',
'HtmlVideoElement',
'HtmlElement',
'MediaStreamConstraints',
'MediaDevices',
'Navigator',
'Node',
'Window',
'MediaStream',
'CanvasRenderingContext2d',
'ImageData',
'console',
'ContextAttributes2d',
]}
It’s clear there are libs that our project will use but what about features
? When we specify features
, compiler will compile in these so we can use them.
Anyway our project uses only libs that allows us to use what browser offer.
Divide our project to 3 parts:
webcam
- fetch image from web camcanvas
- fetch pixel data from imageasciifyier
- turn image data into stringThe canvas.rs
:
We need:
canvas
element2d
contextvideo
frame on canvasuse wasm_bindgen::{prelude::*, Clamped};
use web_sys::{window, CanvasRenderingContext2d, HtmlCanvasElement, HtmlVideoElement};
use crate::{CANVAS_HEIGHT, CANVAS_WIDTH};
#[derive(Debug)]
pub struct Canvas {
pub context: CanvasRenderingContext2d,
}
impl Canvas {
pub fn new() -> Self {
let document = window().unwrap().document().unwrap();
let mut context_attributes = web_sys::ContextAttributes2d::new();
context_attributes.will_read_frequently(true);
// create document element
let canvas = document
.create_element("canvas")
.unwrap()
.dyn_into::<HtmlCanvasElement>()
.unwrap();
// set dimensions
canvas.set_width(CANVAS_WIDTH.into());
canvas.set_height(CANVAS_HEIGHT.into());
// get 2d context
let context = canvas
.get_context_with_context_options("2d", &context_attributes)
.unwrap()
.unwrap()
.dyn_into::<CanvasRenderingContext2d>()
.unwrap();
// store the context
Self { context }
}
// draw a video frame on canvas
pub fn draw_image(self: &Self, video: &HtmlVideoElement) {
self.context
.draw_image_with_html_video_element_and_dw_and_dh(
video,
0.0,
0.0,
CANVAS_WIDTH as f64,
CANVAS_HEIGHT as f64,
)
.unwrap();
}
// fetch pixel data
pub fn get_image_data(self: &Self) -> Clamped<Vec<u8>> {
self.context
.get_image_data(0.0, 0.0, CANVAS_WIDTH as f64, CANVAS_HEIGHT as f64)
.unwrap()
.data()
}
}
Important thing is that you need to use dyn_into
to make created element have a specific type. Other than that whole implementation is easy to read.
The asciifier
takes a pixel data and converts it into String
.
use wasm_bindgen::Clamped;
const CHARS_LENGTH: usize = 16;
const fn get_char(index: usize) -> char {
" .,:;i1tfLCG08@".as_bytes()[index] as char
}
pub fn process(data: &Clamped<Vec<u8>>) -> String {
let mut output = String::new();
for y in 0..40 {
for x in 0..80 {
let offset = (y * 80 + x) * 4;
let red = data[offset];
let green = data[offset + 1];
let blue = data[offset + 2];
//let alpha = data[offset+3]
let brightness = (0.3 * red as f32 + 0.59 * green as f32 + 0.11 * blue as f32) / 255.0;
let char_index = CHARS_LENGTH - (brightness * CHARS_LENGTH as f32) as usize;
output.push(get_char(char_index));
}
output.push('\n');
}
output
}
Last thing? The webcam
:
This module will create video
element and set it up. Get the video stream from getUserMedia
and pass it back into video
.
use wasm_bindgen::prelude::*;
use web_sys::{window, HtmlVideoElement, MediaStreamConstraints};
#[derive(Debug)]
pub struct WebCam {
pub video: HtmlVideoElement,
}
impl WebCam {
pub fn new() -> Self {
let document = window().unwrap().document().unwrap();
let video = document
.create_element("video")
.unwrap()
.dyn_into::<HtmlVideoElement>()
.unwrap();
video.set_autoplay(true);
Self { video }
}
pub async fn setup(&self) -> Result<(), JsValue> {
let mut constraints = MediaStreamConstraints::new();
constraints.video(&JsValue::from(true));
let promise = window()
.unwrap()
.navigator()
.media_devices()
.unwrap()
.get_user_media_with_constraints(&constraints)
.unwrap();
let stream = wasm_bindgen_futures::JsFuture::from(promise).await?;
self.video.set_src_object(Some(&stream.into()));
Ok(())
}
}
And this is where things get complicated. getUserMedia
returns a promise. We need to wait for it! But await
works only within async functions. Let’s mars setup function as async
then.
Making it work together.
We need to create a loop using request_animation_frame
that:
canvas
asciifier
pre
elementHere what it’s looks like:
extern crate console_error_panic_hook;
mod asciifyier;
mod canvas;
mod utils;
mod web_cam;
use std::cell::RefCell;
use std::rc::Rc;
use wasm_bindgen::prelude::*;
use web_sys::{window, HtmlElement};
const CANVAS_WIDTH: u16 = 80;
const CANVAS_HEIGHT: u16 = 40;
fn request_animation_frame(f: &Closure<dyn FnMut()>) {
window()
.unwrap()
.request_animation_frame(f.as_ref().unchecked_ref())
.expect("should register `requestAnimationFrame` OK");
}
#[wasm_bindgen(start)]
async fn run() -> Result<(), JsValue> {
utils::set_panic_hook();
console_log::init().expect("error initializing log");
let context = canvas::Canvas::new();
let web_cam = web_cam::WebCam::new();
let pre = window()
.unwrap()
.document()
.unwrap()
.get_element_by_id("pre")
.unwrap()
.dyn_into::<HtmlElement>()
.unwrap();
if let Ok(()) = web_cam.setup().await {
let f = Rc::new(RefCell::new(None));
let g = f.clone();
*g.borrow_mut() = Some(Closure::new(move || {
request_animation_frame(f.borrow().as_ref().unwrap());
context.draw_image(&web_cam.video);
let data = context.get_image_data();
let output = asciifyier::process(&data);
pre.set_inner_text(&output);
}));
request_animation_frame(g.borrow().as_ref().unwrap());
} else {
pre.set_inner_text("Camera not found!");
};
Ok(())
}
We did it! But wait! async fn run()
?. Yes! Because the target is WASM. We can have async main function. Browser will take care of it!
Compile time!
index.html
of course…
<!DOCTYPE html>
<html lang="en">
<head>
<title>asscify-me</title>
<script src='asciifyme.js'></script>
<script>
wasm_bindgen('asciifyme_bg.wasm');
</script>
</head>
<body>
<pre id="pre"></pre>
</body>
</html>
The build script:
build.sh
:
#/bin/bash
mkdir -p build
cp index.html build/
wasm-pack build -t no-modules -d build/
And we’re done. wasm-pack
will do the dirty work for us!
$ ./build.sh
Serve files from build
folder, and use the browser.
Notice that the browser will give camera access when you’re using https://
or localhost
!
What is better? Rust or GO?
Creating the same application with Rust was much harder, but there are some positives because of that! You’ll ask what? Harder is better? Yes! Rust compiler forced me to think deeper about what I am doing. Like a good, but strict friend ;) Other than that the Rust runtime is a way faster.
For WASM I will choose Rust!
Don’t need to write whole thing yourself if you don’t want. Check out my github or working an app.